Hi,
Based on the discussion on whether to use
WTA or
WTP framed designs to estimate the value of lost load, we ran a pilot which indicated extremely high values for the WTA approach.
We therefore decided to cont. with the WTP experiment.
The design below is a Bayesian efficient one, which provides the respondents with two generic profiles of electricity supply, each characterizes by different number of shutdowns (per year), different duration per shut down, the period in the day (morning, evening, night), whether it will be on weekend/weekdays, whether there will be an announcement before the shutdown, and the cost that the respondents will have to bear (per bill period) in order to avoid this profile and have no planned disruptions (based on the pilot we know what is the preference order regarding morning, evening, night, and weekend/weekdays)
The question is how to describe the
status quo option. Since there is no certainty regarding what will be the extent of disruption in electricity supply, we can either add a status quo option which comprised the 'worst' level of all attributes (max shutdown, max duration, morning, weekdays and no alert) which will be fixed for all meus, or use the max level across the other two alternatives in each menu. Perhaps there are other options for the status quo which we haven't thought about.
Here is an example menu without the status quo option [img]C:\Users\Anat\Dropbox\PC%20(2)\Downloads\Picture2.jpg[/img]
and this is the design
- Code: Select all
design ;alts = optiona, optionb
;rows = 36
;block = 6
;eff = (mnl,d)
;bdraws = halton(500)
;alg = mfederov(candidates = 750)
;reject:
optiona.shutdowns=1 and optiona.cost=296,
optiona.duration= 15 and optiona.cost>152,
optiona.duration= 60 and optiona.cost>200,
optiona.duration>= 120 and optiona.cost<224,
optionb.duration= 15 and optionb.cost>152,
optionb.duration= 60 and optionb.cost>200,
optionb.duration>= 120 and optionb.cost<224,
optionb.shutdowns=1 and optionb.cost=296
;model:
U(optiona) = cost[(n,-0.0304, 0.0494)] * cost[104, 128,152, 176, 200, 224, 248, 272, 296]
+ duration[(n,-0.320, 0.01)] * duration[15,60,120, 240]
+ shutdowns[(n, -0.418, 0.078)] * shutdowns[1,2,3]
+ dayperiod.dummy[0.231|0.636] * dayperiod[2,3,1] ? 1 =evening , 2 = morning, 3= night
+ weekend.dummy[-0.727] * weekend[0,1] ? poeple prefer to have electricity on weekdays
+ alert.dummy[0.630]*alert[1,0]
/
U(optionb) = cost* cost
+ duration* duration
+ shutdowns* shutdowns
+ dayperiod* dayperiod
+ weekend * weekend
+ alert*alert
;formatTitle = 'Scenario <scenarionumber> <blocknumber>'
;formatTableDimensions = 3, 8
;formatTable:
1,1 = ''/
1,2 = 'Cost in USD' /
1,3 = 'Average duration per shutdown in minutes'/
1,4 = 'Number of shutdowns in a season'/
1,5 = 'Part of the day in which shutdown may occur' /
1,6 = 'Shutdown will occur in weekdays or weekend'/
1,7 = 'Shutdown will be announced'/
1,8 ='Choice question&:' /
2,1 = 'Option A' /
2,2 = '<optiona.cost>' /
2,3 = '<optiona.duration>' /
2,4 = '<optiona.shutdowns>'/
2,5 = '<optiona.dayperiod>' /
2,6 = '<optiona.weekend>' /
2,7 = '<optiona.alert>' /
2,8 = '<choice 1>' /
3,1 = 'Option B' /
3,2 = '<optionb.cost>' /
3,3 = '<optionb.duration>' /
3,4 = '<optionb.shutdowns>' /
3,5 = '<optionb.dayperiod>' /
3,6 = '<optionb.weekend>' /
3,7 = '<optionb.alert>' /
3,8 = '<choice 1>'
;formatTableStyle:
1,1 = 'default' /
1,2 = 'headingattribute' /
1,3 = 'headingattribute' /
1,4 = 'headingattribute' /
1,5 = 'headingattribute' /
1,6 = 'headingattribute' /
1,7 = 'headingattribute' /
1,8 = 'headingattribute' /
2,1 = 'heading1' /
2,2 = 'body1' /
2,3 = 'body1' /
2,4 = 'body1' /
2,5 = 'body1' /
2,6 = 'body1' /
2,7 = 'body1' /
2,8 = 'choice1' /
3,1 = 'heading2' /
3,2 = 'body1' /
3,3 = 'body2' /
3,4 = 'body2' /
3,5 = 'body2' /
3,6 = 'body2' /
3,7 = 'body2' /
3,8 = 'choice2'
;formatStyleSheet = Blue buttons.css
;formatAttributes:
optiona.cost(104=#, 128=#, 152=#, 176=#, 200=#, 224=#, 248=#, 272=#, 296=#) /
optiona.duration(15=#,60=#,120=#, 240=#) /
optiona.shutdowns(1=#,2=#,3=#) /
optiona.dayperiod(1=Evening, 2=Morning, 3=Night) /
optiona.weekend(0=weekdays, 1=weekend) /
optiona.alert(1=No, 0=Yes) /
optionb.cost(104=#, 128=#, 152=#, 176=#, 200=#, 224=#, 248=#, 272=#, 296=#)/
optionb.duration(15=#,60=#,120=#, 240=#) /
optionb.shutdowns(1=#,2=#,3=#) /
optionb.dayperiod(1=Evening, 2=Morning, 3=Night) /
optionb.weekend(0=weekdays, 1=weekend)/
optionb.alert(1=No, 0=Yes)
$
Thanks much
R.