problem with design with continuous attribute levels
Posted: Sat Nov 02, 2013 2:18 am
Dear Ngene users,
In my previous post, I was referring to the same design (6 labeled alt. one attribute only- Receipt). I was thinking to conduct a blocked full factorial design, but having read more I start thinking that design with continuous attribute levels, will suit better (?)
I ran this two stages design:
(1)
Design
;alts = Resyclcomp, Ebay, returnCellComp, giveaway, donate, throw
;rows = 27
;orth=ood
;model:
U(Resyclcomp) = a1[-0.0] + b2[0.0] *priceL[1,2,3] /
U(Ebay) = b[-0.0]1+ b2 *priceH[7,8,9] /
U(returnCellComp)=c1[-0.0] +b2*priceM[4,5,6]/
U (giveaway)= d1[0.0] /
U(donate)= e1[0.0] $
(2)
Stage 2
Design
;alts = Resyclcomp, Ebay, returnCellComp, giveaway, donate, throw
;rows = 27
;eff = (mnl, d)
;alg = neldermead(nointerim=0, stop=total(20000 iterations))
;start = initial OOD.ngd
;model:
U(Resyclcomp) = a1[-0.0] + b2[0.0] *priceL[1:3] /
U(Ebay) = b1[-0.0] + b2[0.0] *priceH[7:9] /
U(returnCellComp)=c1[-0.0] +b2[0.0]*priceM[4:6]/
U (giveaway)= d1[0.0] /
U(donate)= e1[0.0] $
However I receive a design whose levels are very badly distributed between the levels' limits, any ideas what went wrong?
Choiceresyclcomp ebay returncellcomp
1 2.999694 8.998687 4.002517
2 2.999795 8.993539 4.002856
3 2.993433 7.000189 4.000493
4 2.997612 7.000779 5.995126
5 2.996142 7.004456 5.996723
6 1.001732 8.989932 4.001474
7 1.00268 7.00236 4.024977
8 1.003889 8.995652 5.994996
9 2.999824 8.997146 4.000834
10 1.000366 8.997462 5.996709
11 2.990816 7.001599 4.010932
12 1.005177 7.00085 5.99839
13 1.005343 7.009948 4.000195
14 2.995379 8.998593 4.002726
15 2.995879 7.008172 5.997839
16 2.99802 8.996511 4.002232
17 2.999614 7.000728 5.998861
18 2.986174 8.997317 6
19 1.000172 8.999026 4.002775
20 2.999264 7.003268 5.98518
21 2.993463 8.990139 4.009737
22 1.006579 8.999564 4.01499
23 1.007325 8.99977 5.999307
24 2.997931 7.00919 4.000772
25 1.001455 8.998704 5.9989
26 1.007227 8.998082 5.99934
27 1.00942 7.011195 5.997541
In my previous post, I was referring to the same design (6 labeled alt. one attribute only- Receipt). I was thinking to conduct a blocked full factorial design, but having read more I start thinking that design with continuous attribute levels, will suit better (?)
I ran this two stages design:
(1)
Design
;alts = Resyclcomp, Ebay, returnCellComp, giveaway, donate, throw
;rows = 27
;orth=ood
;model:
U(Resyclcomp) = a1[-0.0] + b2[0.0] *priceL[1,2,3] /
U(Ebay) = b[-0.0]1+ b2 *priceH[7,8,9] /
U(returnCellComp)=c1[-0.0] +b2*priceM[4,5,6]/
U (giveaway)= d1[0.0] /
U(donate)= e1[0.0] $
(2)
Stage 2
Design
;alts = Resyclcomp, Ebay, returnCellComp, giveaway, donate, throw
;rows = 27
;eff = (mnl, d)
;alg = neldermead(nointerim=0, stop=total(20000 iterations))
;start = initial OOD.ngd
;model:
U(Resyclcomp) = a1[-0.0] + b2[0.0] *priceL[1:3] /
U(Ebay) = b1[-0.0] + b2[0.0] *priceH[7:9] /
U(returnCellComp)=c1[-0.0] +b2[0.0]*priceM[4:6]/
U (giveaway)= d1[0.0] /
U(donate)= e1[0.0] $
However I receive a design whose levels are very badly distributed between the levels' limits, any ideas what went wrong?
Choiceresyclcomp ebay returncellcomp
1 2.999694 8.998687 4.002517
2 2.999795 8.993539 4.002856
3 2.993433 7.000189 4.000493
4 2.997612 7.000779 5.995126
5 2.996142 7.004456 5.996723
6 1.001732 8.989932 4.001474
7 1.00268 7.00236 4.024977
8 1.003889 8.995652 5.994996
9 2.999824 8.997146 4.000834
10 1.000366 8.997462 5.996709
11 2.990816 7.001599 4.010932
12 1.005177 7.00085 5.99839
13 1.005343 7.009948 4.000195
14 2.995379 8.998593 4.002726
15 2.995879 7.008172 5.997839
16 2.99802 8.996511 4.002232
17 2.999614 7.000728 5.998861
18 2.986174 8.997317 6
19 1.000172 8.999026 4.002775
20 2.999264 7.003268 5.98518
21 2.993463 8.990139 4.009737
22 1.006579 8.999564 4.01499
23 1.007325 8.99977 5.999307
24 2.997931 7.00919 4.000772
25 1.001455 8.998704 5.9989
26 1.007227 8.998082 5.99934
27 1.00942 7.011195 5.997541