This happens both if I specify fixed and random priors for mean and standard deviation of the parameter distribution. Is it possible the first evaluation takes so long or is something wrong?
I thought the number of draws might help to see what's going on, but even if I specify the number of draws with e.g. ';bdraws=halton(10)' the output starts with 'Note: Defaulting to 200 Halton random draws.' anyway. Why?
Finally, it does not matter whether I specify '; eff=(mnl,d)' or '; eff=(rp,d,mean)' - what's the point in eff=(mnl,...) if some of my parameters are random?
Any help on these is greatly appreciated.
My syntax looks like this:
Design
; alts = O, E, P, Y
; rows = 12
?; eff=(mnl,d)
; eff=(rp,d,mean)
;bdraws=halton(10)
?; model:
?U(O) = pon[n,-16.0180,4.68627]*pon[0.1,0.3,0.5]+poff[n,-14.0301,7.35709]*poff[0.3,.5,.7]+ro[n,7.32721,3.44299]*ro[25,50,75]+zn[n,3.21745,3.37543]*zn[25,50,75]+in[n,.05263,5.95403]*in[20,30,40]/
?U(E) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]/
?U(P) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]/
?U(Y) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]
?
?$
; model:
U(O) = pon[n,(n,-16.0180,2.19671),(n,4.68627,1.89947)]*pon[0.1,0.3,0.5]+poff[n,(n,-14.0301, 2.31918),(n,7.35709,1.61024)]*poff[0.3,.5,.7]+ro[n,(n,7.32721,1.33660),(n,3.44299,1.03664)]*ro[25,50,75]+zn[n,(n,3.21745,.97683),(n,3.37543,1.03310)]*zn[25,50,75]+in[n,(n,.05263,1.88574),(n,5.95403,2.48069)]*in[20,30,40]/
U(E) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]/
U(P) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]/
U(Y) = pon*pon[0.1,0.3,0.5]+poff*poff[0.3,.5,.7]+ro*ro[25,50,75]+zn*zn[25,50,75]+in*in[20,30,40]
$