How to make constrained designs with covariates?
Posted: Fri Nov 16, 2018 1:16 am
Hello,
I am trying to desing a labeled choice experiment that takes into consideration the country of origin. I would like to do this because for certain countries I have only some levels of the attributes for certain alternatives.
So, I have a model that has some constrains in its design, which runs fine. However, when I tried to include also the covariate (country) then it can not find the constrains. It shows the following error: "An attribute, 'lambleg.igp', specified in the ';cond' property could not be found".
I think it is because I should specify differently the constrains, but checking in the manual I could not find an example on how to do it when the model includes the covariates. Could you please let me know how could I manage this? Can I also specify different constrains for each model?
Thank you!
Here is the code:
Design
; alts(Finland) = lambleg, lambchops, goat, beef, none
; alts(France) = lambleg, lambchops, goat, beef, none
; alts(Italy) = lambleg, lambchops, goat, beef, none
; alts(Greece) = lambleg, lambchops, goat, beef, none
; alts(Spain) = lambleg, lambchops, goat, beef, none
; alts(Uk) = lambleg, lambchops, goat, beef, none
; alts(Turkey) = lambleg, lambchops, goat, beef, none
; rows = 12
; eff = F1(mnl, d)
; fisher (F1) = des1(Finland[0.143],France[0.143],Italy[0.143],Greece[0.143],Spain[0.143],Uk[0.143],Turkey[0.142]))
; con
; cond:
if (lambleg.origin=1, lambleg.igp=0),
if (lambchops.origin=1, lambchops.igp=0),
if (goat.origin=1, goat.igp=0),
if (beef.origin=1, beef.igp=0)
; model(Finland):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[1]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[1]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[1]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(France):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[2]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[2]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[2]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Italy):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[3]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[3]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[3]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Greece):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[4]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[4]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[4]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Spain):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[5]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[5]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[5]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Uk):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[6]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[6]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[6]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Turkey):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[7]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[7]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[7]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
$
I am trying to desing a labeled choice experiment that takes into consideration the country of origin. I would like to do this because for certain countries I have only some levels of the attributes for certain alternatives.
So, I have a model that has some constrains in its design, which runs fine. However, when I tried to include also the covariate (country) then it can not find the constrains. It shows the following error: "An attribute, 'lambleg.igp', specified in the ';cond' property could not be found".
I think it is because I should specify differently the constrains, but checking in the manual I could not find an example on how to do it when the model includes the covariates. Could you please let me know how could I manage this? Can I also specify different constrains for each model?
Thank you!
Here is the code:
Design
; alts(Finland) = lambleg, lambchops, goat, beef, none
; alts(France) = lambleg, lambchops, goat, beef, none
; alts(Italy) = lambleg, lambchops, goat, beef, none
; alts(Greece) = lambleg, lambchops, goat, beef, none
; alts(Spain) = lambleg, lambchops, goat, beef, none
; alts(Uk) = lambleg, lambchops, goat, beef, none
; alts(Turkey) = lambleg, lambchops, goat, beef, none
; rows = 12
; eff = F1(mnl, d)
; fisher (F1) = des1(Finland[0.143],France[0.143],Italy[0.143],Greece[0.143],Spain[0.143],Uk[0.143],Turkey[0.142]))
; con
; cond:
if (lambleg.origin=1, lambleg.igp=0),
if (lambchops.origin=1, lambchops.igp=0),
if (goat.origin=1, goat.igp=0),
if (beef.origin=1, beef.igp=0)
; model(Finland):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[1]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[1]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[1]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(France):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[2]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[2]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[2]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Italy):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[3]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[3]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[3]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Greece):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[4]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[4]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[4]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Spain):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[5]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[5]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[5]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Uk):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[6]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[6]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[6]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
; model(Turkey):
U(lambleg) = b1 +
b2[-0.0001] * llprice[4.84, 6.46, 8.07] +
b3.dummy*slaugh[1,0] +
b4.dummy[-0.0001|0.0001]*origin[1,2,0] +
b5.dummy[0.0001]*igp[1,0] +
b6*igp.dummy[1]*origin+
b7.dummy*feed[1,0] +
b8.dummy*lowcarb[1,0] +
b9.dummy*org[1,0] +
b10.dummy*fat[1,0] +
b11.dummy*prot[1,0] +
b12.dummy*pronti[1,0] +
b13.dummy[0.0001]*rouge[1,0]+
b20*country.covar[7]*igp/
U(lambchops) = b14 +
b15[-0.0001] * lcprice[5.59,7.45,9.32] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[7]*igp/
U(goat) = b16 +
b17[-0.0001] * lgprice[6.04,8.06,10.07] +
b3.dummy*slaugh +
b4.dummy*origin +
b5.dummy*igp +
b6*igp.dummy[1]*origin+
b7.dummy*feed +
b8.dummy*lowcarb +
b9.dummy*org +
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge+
b20*country.covar[7]*igp/
U(beef) = b18[-0.0001] * lbprice[7.23,9.64,12.06] +
b3.dummy*slaugh+
b4.dummy*origin+
b5.dummy*igp+
b6*igp.dummy[1]*origin+
b7.dummy*feed+
b8.dummy*lowcarb +
b9.dummy*org+
b10.dummy*fat +
b11.dummy*prot +
b12.dummy*pronti +
b13.dummy*rouge/
U(none) = b19
$