I have six attributes which I consider all of them are continuous variables. I have two questions:
1. In my study, I think the ideal situation is forced choices without opt-out. I tried to design a forced choices without an opt-out. However, Ngene shows 'undefined'. The code runs well if I add an opt-out.The code also runs well if I remove 'require' condition. Any suggestions for this issue? Thank you!
- Code: Select all
Design
;alts=alt1,alt2
;rows=12
;eff=(mnl,d)
;alg=mfederov
;require:
alt1.A+alt1.B+alt1.C+alt1.D+alt1.E=alt2.A+alt2.B+alt2.C+alt2.D+alt2.E,
alt1.A+alt1.B+alt1.C+alt1.D+alt1.E<=20,
alt2.A+alt2.B+alt2.C+alt2.D+alt2.E<=20
;model:
U(alt1)=b01[0]+
b1[0]*A[4,6,8,10](1-4,1-4,1-4,1-4,1-4)+
b2[0]*B[0,2,4,6](1-5,1-4,1-4,1-4)+
b3[0]*C[0,2,4,6](1-4,1-4,1-4,1-4)+
b4[0]*D[0,1,2,3]+
b5[0]*E[6,7,8,9](1-5,1-5,1-5,1-5)+
b6[0]*F[9,12,15,18,21](1-4,1-4,1-4,1-4,1-4)
/
U(alt2)=b1*A+
b2*B+
b3*C+
b4*D+
b5*E+
b6*F
$
2. To relax the linear assumption, I also tried the non-linear assumption by considering the first five attributes as categorical variables rather than continuous variables. The code is similar to the above one except I add 'dummy' before the first five attributes. The issue is MNL covariance matrix that Ngene generated looks wired.The matrix looks fine if I considered attributes as continuous variables. I am not sure whether I need to take this matrix seriously.
I will have only 200 sample size in my data. So I do not want to complex the design as it may require large sample size. The non-linear assumption will increase the number of parameters and the number of choice sets each individual faces. My stupid question is may I consider the attributes as continuous variables in Ngene design, and in analytical part, I test non-linearity by just dummy those continuous variables? I saw there is suggestion for nonlinear transformation using log or square. Any suggestions in my case? Thank you.
The code:
- Code: Select all
[code]
Design
;alts=alt1, alt2, none
;rows=12
;eff=(mnl,d)
;alg=mfederov
;require:
alt1.A+alt1.B+alt1.C+alt1.D+alt1.E=alt2.A+alt2.B+alt2.C+alt2.D+alt2.E,
alt1.A+alt1.B+alt1.C+alt1.D+alt1.E<=20,
alt2.A+alt2.B+alt2.C+alt2.D+alt2.E<=20
;model:
U(alt1)=b01[0]+
b1.dummy[0|0|0]*A[4,6,8,10]+
b2.dummy[0|0|0]*B[0,2,4,6]+
b3.dummy[0|0|0]*C[0,2,4,6]+
b4.dummy[0|0|0]*D[0,1,2,3]+
b5.dummy[0|0|0]*E[6,7,8,9]+
b6[0]*F[9,12,15,18,21](1-3,1-3,1-3,1-3,1-3)
/
U(alt2)=b1*A+
b2*B+
b3*C+
b4*D+
b5*E+
b6*F
$
The following is part of MNL covariance matrix generated from Ngene.
MNL covariance matrix
Prior b01 b1(d0) b1(d1) b1(d2) b2(d0) b2(d1) b2(d2) b3(d0)
b01 49.358466 -16.903859 -12.545522 -6.151441 -17.13067 -10.738078 -6.438699 -16.422725
b1(d0) -16.903859 7.886921 5.818682 3.75669 5.86381 3.27982 1.211025 4.976761
b1(d1) -12.545522 5.818682 5.639421 3.175691 4.137761 2.328256 1.020922 3.894463
b1(d2) -6.151441 3.75669 3.175691 4.322462 2.448045 1.478313 0.118615 1.076033
b2(d0) -17.13067 5.86381 4.137761 2.448045 8.248761 5.385899 3.624088 5.542397
b2(d1) -10.738078 3.27982 2.328256 1.478313 5.385899 5.162557 3.337512 3.47904
b2(d2) -6.438699 1.211025 1.020922 0.118615 3.624088 3.337512 3.669265 2.208844
b3(d0) -16.422725 4.976761 3.894463 1.076033 5.542397 3.47904 2.208844 8.052228
b3(d1) -12.291671 3.540414 2.755003 0.634705 3.773113 2.292762 1.406605 5.961626
b3(d2) -6.473694 1.091626 1.107914 -0.453802 1.74347 1.464988 0.916929 4.575568
b4(d0) -8.154999 2.918653 1.511069 0.79502 2.613869 1.552907 0.817293 2.239433
b4(d1) -5.786584 1.699097 0.804938 0.519681 1.614269 1.082255 0.669 1.805383
b4(d2) -4.527428 1.814926 1.241008 1.767892 1.63062 1.187745 0.37446 0.458844
b5(d0) -8.191402 2.673152 2.152325 0.765444 2.674721 1.540421 0.819318 3.32214
b5(d1) -6.508215 2.096138 1.918387 0.981714 2.224329 1.089844 0.80548 2.038644
b5(d2) -4.693104 1.674288 1.681206 1.265461 1.677781 0.769887 0.372343 1.369694
b6 -0.294602 0.070244 0.02958 -0.038041 0.033454 -0.019679 -0.010246 0.029593
b02 49.218445 -16.704556 -12.5894 -6.034597 -17.200416 -10.722401 -6.470932 -16.6643