End points design?
Posted: Sat Dec 28, 2019 7:07 am
Hi all,
I am currently designing a choice experiment with 4 categorical attributes (all have 3 levels) and 1 monetary attribute with 4 levels, using following syntax:
Design
;alts = A*, B*, OO
;rows = 18
;block = 3
;eff = (mnl, d, mean)
;bdraws = halton(100)
;alg = mfederov(candidates=1000)
;reject:
A.Erosion = 3 and A.Carbon = 1,
B.Erosion = 3 and B.Carbon = 1,
A.Carbon = 3 and A.Erosion = 1,
B.Carbon = 3 and B.Erosion = 1
;model:
U(A) = B1[(n, -0.1, 0.1)] * Price[5, 7, 9, 11]
+ B2.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Biodiversity[2,3,1]
+ B3.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Water[2,3,1]
+ B4.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Erosion[2,3,1]
+ B5.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Carbon[2,3,1] /
U(B) = B1 * Price
+ B2.dummy * Biodiversity
+ B3.dummy * Water
+ B4.dummy * Erosion
+ B5.dummy * Carbon /
U(OO) = ASC[(n, 0, 0.1)]
$
I've tried different priors and dummy and effects type coding, but for the price attribute, the lowest and highest level appear a lot more often then the other levels (7: 4 times and 9: only 1 time over both alternatives). This seems strange to me? Does anyone have an idea why this is the case and how I could create more level balance for this attribute?
Thanks in advance!
Best regards,
Iris
Below the design that comes out:
Choice situation a.price a.biodiversity a.water a.erosion a.carbon b.price b.biodiversity b.water b.erosion b.carbon Block
1 11 2 2 3 3 5 1 3 1 2 1
2 5 3 3 3 2 9 2 1 2 3 3
3 5 1 2 2 3 5 2 1 1 1 3
4 11 3 1 1 1 5 2 2 3 2 2
5 5 3 1 2 2 11 2 2 3 3 3
6 5 2 1 1 2 11 1 3 2 1 2
7 11 3 2 2 1 5 2 3 3 3 3
8 11 2 2 1 2 5 1 1 3 3 2
9 5 2 3 2 1 5 3 1 3 3 1
10 5 1 2 1 1 11 3 3 2 2 1
11 7 2 3 2 3 5 3 2 1 1 1
12 5 3 2 2 3 9 1 3 3 2 2
13 11 3 1 3 3 5 2 2 2 2 2
14 5 2 1 2 1 11 3 3 1 2 1
15 5 3 1 3 2 5 1 2 2 3 1
16 7 1 1 2 2 5 3 3 1 1 3
17 5 3 3 2 3 9 1 2 3 2 2
18 5 1 3 2 1 7 3 2 1 2 3
I am currently designing a choice experiment with 4 categorical attributes (all have 3 levels) and 1 monetary attribute with 4 levels, using following syntax:
Design
;alts = A*, B*, OO
;rows = 18
;block = 3
;eff = (mnl, d, mean)
;bdraws = halton(100)
;alg = mfederov(candidates=1000)
;reject:
A.Erosion = 3 and A.Carbon = 1,
B.Erosion = 3 and B.Carbon = 1,
A.Carbon = 3 and A.Erosion = 1,
B.Carbon = 3 and B.Erosion = 1
;model:
U(A) = B1[(n, -0.1, 0.1)] * Price[5, 7, 9, 11]
+ B2.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Biodiversity[2,3,1]
+ B3.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Water[2,3,1]
+ B4.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Erosion[2,3,1]
+ B5.dummy [(n, 0.1, 0.05)|(n, 0.15, 0.075)] * Carbon[2,3,1] /
U(B) = B1 * Price
+ B2.dummy * Biodiversity
+ B3.dummy * Water
+ B4.dummy * Erosion
+ B5.dummy * Carbon /
U(OO) = ASC[(n, 0, 0.1)]
$
I've tried different priors and dummy and effects type coding, but for the price attribute, the lowest and highest level appear a lot more often then the other levels (7: 4 times and 9: only 1 time over both alternatives). This seems strange to me? Does anyone have an idea why this is the case and how I could create more level balance for this attribute?
Thanks in advance!
Best regards,
Iris
Below the design that comes out:
Choice situation a.price a.biodiversity a.water a.erosion a.carbon b.price b.biodiversity b.water b.erosion b.carbon Block
1 11 2 2 3 3 5 1 3 1 2 1
2 5 3 3 3 2 9 2 1 2 3 3
3 5 1 2 2 3 5 2 1 1 1 3
4 11 3 1 1 1 5 2 2 3 2 2
5 5 3 1 2 2 11 2 2 3 3 3
6 5 2 1 1 2 11 1 3 2 1 2
7 11 3 2 2 1 5 2 3 3 3 3
8 11 2 2 1 2 5 1 1 3 3 2
9 5 2 3 2 1 5 3 1 3 3 1
10 5 1 2 1 1 11 3 3 2 2 1
11 7 2 3 2 3 5 3 2 1 1 1
12 5 3 2 2 3 9 1 3 3 2 2
13 11 3 1 3 3 5 2 2 2 2 2
14 5 2 1 2 1 11 3 3 1 2 1
15 5 3 1 3 2 5 1 2 2 3 1
16 7 1 1 2 2 5 3 3 1 1 3
17 5 3 3 2 3 9 1 2 3 2 2
18 5 1 3 2 1 7 3 2 1 2 3