Homogeneous pivoted design
Posted: Sat Mar 19, 2022 6:40 pm
Dear Ngene team!
As this is my first post of the forum, I would like to thank you for having developed such a brilliant software! Ngene made a difference in my research activities!
I am trying to generate a pivoted design – The optimization/search seems to work fine, but the results look strange. Ngene only gives me content for the 1st sub-design and then only columns full of zeroes for the other sub-designs. I’ve tried to generate both a homogeneous and heterogeneous pivoted design and in both cases I still face the same issue.
I’ve installed the latest version of Ngene (1.3) but it did not made a difference.
Below is the code for the homogeneous design – This is a DCE with 3 options per task, one of them being an opt-out/fixed choice option (referred as “nomed” in the code). Only 1 attribute is pivoted (“hotflash”) such that the hypothetical treatment options (“opta” and “optb”) should represent improvements relative to the opt-out option. I initially went for 4 population segments (referred as seg1-seg4).
Am I missing something obvious or is it a bug?
Design
;alts(seg1) = nomed, opta, optb
;alts(seg2) = nomed, opta, optb
;alts(seg3) = nomed, opta, optb
;alts(seg4) = nomed, opta, optb
;rows = 30
;block = 3, minsum
;eff = fish(mnl,d)
;alg = mfederov(stop=noimprov(240mins))
;require:
nomed.vaginal = 2,
nomed.cancer = 3,
nomed.heart = 3,
nomed.fracture = 1
;fisher(fish) = design1(seg1[0.25], seg2[0.25], seg3[0.25], seg4[0.25])
;model(seg1):
U(nomed) = b1[-0.0075]*hotflash.ref[4] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg2):
U(nomed) = b1[-0.0021]*hotflash.ref[15] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg3):
U(nomed) = b1[-0.0013]*hotflash.ref[26] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg4):
U(nomed) = b1[-0.0009]*hotflash.ref[37] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture $
As this is my first post of the forum, I would like to thank you for having developed such a brilliant software! Ngene made a difference in my research activities!
I am trying to generate a pivoted design – The optimization/search seems to work fine, but the results look strange. Ngene only gives me content for the 1st sub-design and then only columns full of zeroes for the other sub-designs. I’ve tried to generate both a homogeneous and heterogeneous pivoted design and in both cases I still face the same issue.
I’ve installed the latest version of Ngene (1.3) but it did not made a difference.
Below is the code for the homogeneous design – This is a DCE with 3 options per task, one of them being an opt-out/fixed choice option (referred as “nomed” in the code). Only 1 attribute is pivoted (“hotflash”) such that the hypothetical treatment options (“opta” and “optb”) should represent improvements relative to the opt-out option. I initially went for 4 population segments (referred as seg1-seg4).
Am I missing something obvious or is it a bug?
Design
;alts(seg1) = nomed, opta, optb
;alts(seg2) = nomed, opta, optb
;alts(seg3) = nomed, opta, optb
;alts(seg4) = nomed, opta, optb
;rows = 30
;block = 3, minsum
;eff = fish(mnl,d)
;alg = mfederov(stop=noimprov(240mins))
;require:
nomed.vaginal = 2,
nomed.cancer = 3,
nomed.heart = 3,
nomed.fracture = 1
;fisher(fish) = design1(seg1[0.25], seg2[0.25], seg3[0.25], seg4[0.25])
;model(seg1):
U(nomed) = b1[-0.0075]*hotflash.ref[4] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg2):
U(nomed) = b1[-0.0021]*hotflash.ref[15] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg3):
U(nomed) = b1[-0.0013]*hotflash.ref[26] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture
;model(seg4):
U(nomed) = b1[-0.0009]*hotflash.ref[37] + b3.dummy[0.03]*vaginal[1,2] + b4.dummy[0.03|0.0225]*cancer[1,2,3] + b5.dummy[0.03|0.0133]*heart[1,2,3] + b6.dummy[-0.03|-0.015]*fracture[3,2,1] /
U(opta) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2.dummy[0.03]*delay[1,2] + b3*vaginal + b4*cancer + b5*heart + b6*fracture /
U(optb) = b1*hotflash.piv[-90%,-70%,-50%,0%] + b2*delay + b3*vaginal + b4*cancer + b5*heart + b6*fracture $